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Abstract
Speech emotion recognition (SER) is being actively developed
in multiple real-world application scenarios, and users tend to
become intimately connected to these services. However, most
existing SER models are vulnerable against a growing diverse
set of adversarial attacks. The degraded performances can lead
to dreadful user experiences. In this work, we propose a self-
supervised augmentation defense (SSAD) strategy to learn a
single purify network acts as a general front-end to neutral-
ize adversarial distortions without knowing the types of attack
beforehand. We show that our approach can robustly defend
against two different gradient-based attacks at various inten-
sities on the well-known IEMOCAP. Further, by examining
metrics of protection efficacy and recovery rate, our approach
shows a consistent protection behavior to prevent adverse out-
comes and is capable to recover samples that are wrongly-
predicted before purification.
Index Terms: speech emotion recognition, adversarial attacks,
self-supervised learning, augmentation

1. Introduction
Speech emotion recognition (SER) is being actively deployed
in real-world settings, as a result, developing robust SER has
naturally become an important research topic. In the past, re-
searchers have mostly worked on mitigating performance drops
due to unwanted and unaccounted variations, e.g., small scale
training corpus [1], distinct contextualized settings [2], wide
ranges of cross-corpus scenarios [3, 4], and even semantic
mismatch in emotion labeling [5], etc. Exemplary works in-
clude the use of very-deep structures [6, 7], generative mod-
els [8, 9, 10], adversarial learning [11], and transfer learning
approach [12]. Most of these contemporary methods rely on
deep learning of various network complexities to handle issues
of non-robust variations to achieve reliability [13].

As these SER models begin to be deployed in diverse sce-
narios, intentional malicious attacks become an emerging ro-
bustness issue for model usability [13]. Deep learning-based
models are vulnerable to attacks of gradient distortions. These
gradient distortions would fatally degrade the model’s perfor-
mance while being spotless, e.g., in domains of anti-spoofing
[14], speaker verification [15], and image classification [16, 17].
There has not been similar research in SER that addresses the
non-robust issue due to adversarial distortions only until re-
cently [18, 19] as it has become obvious that SERs are vul-
nerable to these adversarial attacks as well [20]. For instance,
Saurabh was one of the first works that propose to impose a reg-
ularization term derived from the adversarial training to smooth
the model prediction [21]. More recently, another straightfor-
ward and effective defense mechanism is to expose the SER
model to adversaries at training, e.g., Ren et al. [18] proposed
to train a defense model by augmenting the training dataset with

attack samples along with a feature similarity loss to safeguard
the performance of the trained SER under adversarial attacks.

However, these current SER defend strategies only guaran-
tee protection against a specific (seen) type of adversarial at-
tack at a pre-determined intensity. While achieving promising
performances, considering the growing variants of adversarial
attacks, where each can come at a different intensity, this com-
binatorics makes training a defense model for every case im-
practical. Hence, developing a method that operates without
knowing the downstream SER model and the type of attacks
beforehand is more desirable. In this work, we propose to use
a self-supervised augmentation defense (SSAD) algorithm that
learns to neutralize the gradient distortions of speech represen-
tation against adversarial attacks without knowing the attack
types. First, we augment self-supervised variants of gradient
distorted samples, and by learning a purify network to sani-
tize these distortions, we can use this single purify network as
a general-purpose front-end to neutralize adversaries. This con-
cept is similar to developing vaccines, i.e., by engineering vari-
ants of viruses (gradient distortions) and invoking correspond-
ing protection (purify network), one simply needs to be vacci-
nated to be immune to the (gradient-based) virus.

Specifically, at the training stage, we generate adversaries
using a self-supervised augmentation (SSA) procedure at each
iteration, then optimize the purify network by removing these
gradient-based distortions. At the inference stage, we only need
to apply the purify network to sanitize the input sample which
allows it to be applied generally to different downstream SER
models of the same input. According to our experiments, our
proposed SSAD achieves consistently robust results under two
different types of attack with versatile intensities whereas the
recent SOTA model [18] performs well only for the seen type
of attack at low attack intensities. Moreover, we further provide
an analysis of our SSAD by examining metrics of protection
efficacy (reduced risk of adverse outcome) [22] and recovery
rate (correcting the pre-purified prediction). In summary, our
method maintains consistent SER performance under different
adversarial attacks without prior knowledge. It not only shows a
significant reduction in the risk of the adverse outcome but also
has the ability to correct a significant portion of the originally-
wronged prediction.

2. Methodology
In this section, we will describe our proposed SSAD defense
strategy. The overall framework is shown in Fig. 1. Here, we
divide it into two stages which are the training and the infer-
ence stage. To better understand the following details, we first
define several major symbols used. The x, x∗

adv represent origi-
nal and training adversarial samples respectively, and Fϕ stands
for a well-trained feature extractor, and P , D denotes the purify
network and the discriminator respectively.



Figure 1: An overall scheme of our self-supervised augmentation defense strategy (SSAD) depicted at training and inference stages.
During training, SSAD is composed of Purify network (P ), Discriminator network (D), well-trained feature extractor (Fϕ) and SSA
mechanism, where dash line and solid line represent that parameters are trainable and frozen respectively.

2.1. Training Stage

2.1.1. Self-Supervised Augmentation (SSA)

Conventional logit-based attacks target the discriminative
boundary of a inference model. In this work, our aim is to
generate augmented samples without knowing the recognition
model. The use of self-supervised method that generates gradi-
ent distorted samples has been suggested as an effective mech-
anism in image classification [23]. We adopt a similar concept
to generate adversarial samples relying solely on exploring the
representation space. In this work, we use VGG-16 [24] as the
Mel-spectrogram representation extractor, Fϕ. Instead of aug-
menting the dataset by generating a specific type of attack ad-
versaries to the target inference model, our method encourages
broad gradient exploration in the representation space by impos-
ing a process of maximizing the distortion between adversarial
and original samples according to the well-trained feature ex-
tractor. This exploration of representation space is formulated
by the following perturbation procedure.

argmax(Fϕ(xori), Fϕ(x
∗
adv)), s.t.||xori − x∗

adv|| < δ (1)

where δ is the perturbation budget.
Therefore, the adversarial samples are iteratively generated

according to the gradient distortion ∇Fϕ between xori and
x∗
adv . The overall process is defined as:

x∗
adv = xori + s · sign(∇Fϕ) (2)

x∗
adv = clip(x∗

adv, xori − δ, xori + δ) (3)

where s is step size, δ is the perturbation budget. The clip func-
tion would map the x∗

adv into the range of [xori − δ, xori + δ].
Note that in our training procedure, all the adversaries are re-
generated for each iteration simultaneously to ensure the model
is optimized iteratively.

2.1.2. Purify Network

After the SSA, the purify network is learned to sanitize these
adversaries, i.e., taking the Mel-spectrogram of the adversarial
samples to the cleaned one. The purification occurs in the Mel-
spectrogram instead of representation space (e.g., VGGs) has
advantages that it enables the network to act as a general front
end, i.e., it can be applied to any of those SER models with
Mel-spectrograms as input. Furthermore, this method does not

depend on the specifics of the target SER model. This relaxes
the constraint that we need to customize the purify network to
handle differences in the number of hidden dimensions used in
the target SER model.

Therefore, with paired input of original and adversarial
samples, the purify network learns to clean the adversarial in-
puts. The pixel-wise clean-up between clean and dirty input is
applied here. The objective function is defined as:

Lpix = ||xori − P (x∗
adv)||2 (4)

Further, we impose a feature loss constraint to ensure that
not only the Mel-spectrogram is cleaned but also the representa-
tion is matched from the well-trained feature extractor perspec-
tive. The loss is defined as below:

Lfeat = |Fϕ(xori)− Fϕ(P (x∗
adv))| (5)

2.1.3. Discriminator

Besides the clean-up and feature loss (described in section
2.1.2), we additionally impose a discriminator to distinguish the
purified Mel-spectrogram and the original one. The discrimina-
tor encourages the purified sample to be indistinguishable from
the real original one that acts as another constraint to properly
retain the original sample information; the loss is defined as:

Ladv = log(D(xori)) + log(1−D(P (x∗
adv))) (6)

The overall training objective function (LSSAD) is defined as:

LSSAD = αLadv + βLpix + γLfeat (7)

where Ladv , Lpix, Lfeat correspond to losses mentioned
above, and α, β, γ are tunable weights between each loss.

2.2. Inference Stage

At the inference stage, we consider a SER application sce-
nario where there is an existing recognition model and attack-
ers would hack the model with adversarial samples to sabotage
the performance. Under such circumstances, before passing the
samples directly through the target SER model, one would vac-
cinate the sample by running it through the learned purify net-
work as the sanitizer to clean the samples and pass the clean
input, e.g., Mel-spectrogram, to the target recognition model.
The procedure is formulated as below:

xclean = P (x†
adv; θ) (8)



Table 1: Results are presented in UAR on the target emotion recognition model by using the defense baseline model and our proposed
SSAD, and the seen and unseen adversarial type are FGSM and PGD, respectively. The intensity (ϵ, k) corresponds to the parameter
setting of FGSM and PGD as well, and the ’train w.’ stands for the baseline models trained with a specific intensity. Not the pre-trained
target model has an UAR of 51.06%.

Seen Adversarial Type Unseen Adversarial Type
train w. different intensity (ϵ) different intensity (k)

ϵ .003 .006 .009 .012 .015 3 6 9 12 15

Adv.[18]

.003 49.03% 45.59% 42.51% 39.43% 36.73% 32.53% 24.09% 21.72% 21.43% 21.31%

.006 42.03% 40.28% 38.12% 36.10% 34.29% 31.02% 25.76% 24.71% 24.18% 24.18%

.009 42.95% 40.40% 38.50% 36.47% 34.98% 32.08% 24.37% 23.02% 22.63% 22.41%

.012 45.36% 43.44% 41.71% 39.77% 37.86% 35.28% 29.98% 28.57% 28.38% 28.18%

.015 43.39% 41.78% 40.34% 38.63% 37.34% 35.07% 29.72% 28.53% 28.21% 28.12%
SSAD - 45.94% 44.82% 43.54% 42.88% 40.46% 39.10% 34.91% 33.21% 33.54% 34.19%

y = SER T (xclean;ϕ) (9)

where P , SER T represent the trained purify network and tar-
get SER model respectively, and θ, ϕ are the corresponding
model parameters, and x†

adv is the adversarially attacked test-
ing sample, xclean is the sanitized sample, y is the prediction
from the target SER model. The overall purify procedure is il-
lustrated in Figure 1, and we also plot the spectrogram of an
original, its corresponding adversarial sample, and the sample
after being purified as an example.

3. Experimental Results
3.1. Database - IEMOCAP

The IEMOCAP dataset [25] is a well-known SER benchmark
that contains five dyadic spoken interaction sessions in total and
two actors (one male and one female) are included in each ses-
sion. We use the four major categorical emotion utterances for
our experiment, which contains 5531 utterances in total that in-
cludes happy(excited), sad, angry, neutral. In our experiment,
the session independent cross-validation scheme is applied, i.e.,
one speaker in one session would be taken as a testing set and
the other is a validation set to decide the early stopping point to
optimize the performance of the model.

3.2. Experimental Setup

3.2.1. SER Model and Mel-spectrogram Input

In this work, our target SER model is pre-trained using VGG16-
based CNN structure that achieves an UAR 51.06% in the 4
class recognition task. Log Mel-spectrogram is chosen as input
that is computed by torchaudio toolkit. To properly compare to
the previous work, the settings are set the same as [18]: the win-
dow size of the spectrogram is 512 units with an overlap of 256
units, 64-bin Mel filter bank is applied; for those sentences that
are longer than 6 seconds (about 24%), the Mel-spectrogram is
extracted from the middle parts. All log Mel-spectrograms are
fixed to the dimension of (64, 373).

3.2.2. SSAD Setup

We use the transformer layers as our backbone model to imple-
ment the purify network. Specifically, we apply 8 multi-headed
attention of 6 layers of transformer blocks cascaded, and the in-
put size is set as 64. As for the discriminator, it is composed of
5 convolutional layers with residual connections, followed by
an average pooling, and 4 fully connected layers of parameters
set as (4096, 1024, 64, 1). The well-trained feature extractor
for log Mel-spectrogram is VGG-16 that is further fine-tuned

on the IEMOCAP without seeing the testing set in each cross-
validation fold.

During the training stage, Adam optimizer is utilized with
learning rate 1e-3, and the early stopping depends on the loss of
the validation set with a patience setting of 5. The weight setting
of α, β, γ are all set to 1. For the adversarial samples augmen-
tation settings, the step size (s) and the perturbation budget (δ)
are 0.01 and 0.06.

3.2.3. Baseline Model and Adversarial Attacks

As for the baseline defense method, we compare it to the most
recent similarity-based model [18]. This approach trains the
SER on an augmented dataset of adversarial samples that are
generated by model-based gradient distortions with an addi-
tional feature similarity criterion. Since this baseline approach
requires a pre-defined attack and intensity, we evaluate the
method by training multiple defense models with different in-
tensities of adversarial attacks following the procedure in [18].

For the attacks at the inference, we evaluate defense meth-
ods under two common gradient-based adversarial attacks.
They are briefly described below:

• Fast Gradient Sign Method (FGSM) [26]
FGSM compute the gradient trend of the target model and
poison the original sample accordingly. In specifics, the at-
tack is defined as:

x†
adv = x+ ϵ · sign(▽xL(θ, x, y)) (10)

where the x, y, x†
adv are original input, its label, and its test-

ing adversary respectively. Then ϵ is a disturbing parameter
that represents the intensity of the attack, and L is the loss
used in the target inference model with parameter θ.

• Projected Gradient Descent (PGD) [27]
PGD can be seen as an advanced gradient-based attack algo-
rithm. It searches for the optimal gradient smoothly through
multiple steps and compute a more targeted and precise noise.
The attack is defined as below:

x†k+1
adv =

∏
(x†k

adv + ϵ · sign(▽xL(θ, x, y))) (11)

the index k which stands for the step number of PGD and
represents the intensity of the attack.

3.3. Result and Analysis

We first evaluate the robustness of the defense method in the set-
ting when experiencing the two types of attack and present UAR



Figure 2: Protection efficacy (∗) and recovery rate (·) curve of
our proposed SSAD (red) and the baseline model (green).

as metrics. We present two cases since the baseline method
(denoted as Adv. ) requires knowledge on the type of attacks.
We treat FGSM as the “seen” attack and PGD as the “unseen”
attack; note that there is no such distinction for our proposed
SSAD. We then examine two additional metrics, protection ef-
ficacy and recovery rate, to bring additional insights into the
defense mechanism.

3.3.1. Seen versus Unseen Type of Adversarial Attacks

In Table 1, we investigate the SER performances by examining
combinations of seen and unseen attacks with a range of dif-
ferent intensity levels. The baseline models (Adv. ) are trained
with different intensities of the seen type (FGSM) listed in the
second column. Note that in our proposed SSAD, all the adver-
sarial attacks are unseen while training a purify network.

For the seen adversarial attack, we observe that the base-
line method better maintains the performance only under low-
intensity adversarial attacks (ϵ-0.003, 0.006, UAR of 49.03%
and 45.59%). However, as the attack intensity increases (ϵ-
0.009∼0.015), our proposed SSAD outperforms the baseline
method and maintains the highest performance even when the
Adv. method is trained in the perfectly matched condition (seen
type with the same intensity). Specifically, our proposed SSAD
achieves an average of 43.53% UAR over a range of intensity at-
tacks which surpasses the best average of baseline models (train
w. ϵ-0.003) 1.33% in absolute points (p-value<0.05). It’s worth
mentioning that the performance of our proposed SSAD is quite
stable with only σ = 1.86% when compared to the best baseline
model that has a high σ = 4.71%.

For the unseen adversarial type, our proposed SSAD
achieves an average 34.99% UAR (σ = 2.14%), while the best
average performance of baseline models results in 30.08% UAR
(σ = 2.68%). A larger drop of performances between unseen
and seen adversarial attacks for the baseline models shows that
training with a single type of attack can lead to over-fitting.
In contrast, our proposed SSAD utilizes self-supervised purify
strategy that neutralizes a range set of gradient distortions is
shown to provide a better generalization of defense capacity.
Furthermore, SSAD only requires a single purify network in-
stead of running many variants of defense models.

3.3.2. Protection Efficacy and Recovery Rate Analysis

To better understand the defense mechanism, we utilize two ad-
ditional metrics to evaluate our defense model, i.e., protection
efficacy and recovery rate. These two metrics are defined as:

Protection Efficacy (PE) =
Rno-protect −Rprotected

Rno-protect
(12)

where R indicates the risk of adverse outcome, i.e., the percent-
age of samples that result in the wrong prediction after being at-
tacked when they are originally correctly predicted by SER T .
Rno-protect indicates this percentage without any defense mecha-
nism applied, where Rprotected indicated otherwise. PE is a com-
mon metric used in assessing vaccination efficacy [22], which
is interpreted as the reduced risk of adverse outcome after ap-
plying defense in this context.

Recovery Rate (RR) =
Nwrong → correct

Nwrong
(13)

where N indicates the number of samples, and RR computes the
percentage of the samples that are originally predicted wrongly
by SER T but correctly after applying a defense method. Note
that for these two metrics, the higher is better.

In this analysis, we example these two metrics for the
SSAD and the baseline Adv under a range of PGD attacks
(k=1∼30). The result is presented in Figure 2. We see
that SSAD (red solid line) holds a better protection efficacy
(avg=0.440, σ=0.083) under various intensities of PGD attacks.
The baseline models (green solid line) hold a significantly sub-
optimal protection efficacy (avg=0.198, σ=0.052). Our pro-
posed SSAD achieves about 45% average reduced risk in turn-
ing the original correct samples to the wrong prediction whereas
the current best approach obtains only about 20%.

When considering the recovery rate (dashed lines), our pro-
posed SSAD obtains an average of 0.19 (σ=0.032) which is
higher than the baseline models which have an average of 0.15
(σ=0.054). It is quite intriguing to see that these defense mod-
els not only protect the original SER, but also actively correct
the original SER (e.g., SSAD corrects about 20%). This may
be due to the usage of the “augmentation-as-defense” strategy,
where the expansion on the representation-gradient spaces may
indirectly add needed variability to the emotion corpus that is
originally missing, i.e., a similar finding in previous works on
using other augmentation techniques for mitigating limited cor-
pus variability [28]. These two metrics further demonstrate two
aspects of a defense model: the protection efficacy and the re-
covery rate of our proposed SSAD.

4. Conclusions and Future Works
With a proliferation of SER applications in our daily life, the
robustness of the model against malicious attacks becomes an
important issue. In this work, we propose a self-supervised
augmentation defense (SSAD) model for preventing versatile
adversarial attacks. Unlike recent SOTA similarity-based ad-
versarial model training that works only for a specific attack,
SSAD shows the generalizability across various intensities of
adversarial attacks using a single purify network. Furthermore,
the defense by augmentation through exploration in distorted
gradient spaces not only provides a robust and better protection
efficacy but also shows improvement in indirectly enhancing the
target SER model.

In our future effort, we would investigate multiple SER
datasets and other downstream speech tasks to evaluate the ef-
fectiveness of this purify network. Another direction would in-
clude black-box adversarial attacks to generate chaos samples
without knowing the information of target recognition models.
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